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Abstract
Ising Models are one of the most popular class of probability distributions with
applications in wide ranging fields such as physics, engineering and finance. In
this paper, we attempt to learn the underlying graphical model robustly in presence
of adversarial corruptions. In this work, we establish new lower and upper bounds
for robustly learning Ising models.

1 Introduction

Ising models are an important class of probability distributions that model simple dependencies
between binary random variables. They have been used to model network behavior in various
domains, such as social networks, biology, and game theory [Daskalakis et al., 2011, 2017, Ellison,
1993, Montanari and Saberi, 2010]. Recent work due to Klivans and Meka [2017] develops an
algorithm with essentially optimal run-time and sample complexity for the problem of structure
learning for Ising models. That is, given samples from the unknown Ising model, the algorithm
recovers all of its edge weights with small error.

The main thrust of this paper is to understand whether structure learning for Ising models can be made
robust; i.e., can we efficiently recover the Ising model if an adversary is corrupting some draws from
the underlying distribution? In the strongest setting, the adversary is typically allowed to observe the
entire dataset and replace a constant fraction η of samples with arbitrary values.

In this work, we establish new lower and upper bounds for robustly learning Ising models based
on the sparsity λ of the model and the smallest absolute edge weight α. For the lower bounds, we
construct two Ising models over different graphs. We show that if an adversary is allowed to corrupt
even η = α exp(−O(λ)) fraction of samples then no algorithm can differentiate the two distributions.

We complement our lower bound by establishing a robustness guarantee of the Sparsitron algorithm
of Klivans and Meka [2017]. We show that the Sparsitron algorithm is robust to an adversary who
can arbitrarily corrupt a fraction η = α2 exp(−O(λ)) of samples from the Ising model. The number
of samples required is the same as in the uncorrupted case, specifically, on the order of exponential in
the sparsity of the model and logarithmic in the dimension of the model.

1.1 Related Work

Ising Models Bresler [2015] was the first to establish tractable algorithms for learning sparse Ising
models with sample complexity that, for a fixed sparsity, depends only on the logarithm of the number
of variables. The dependence on the sparsity was improved from doubly exponential to exponential
by Vuffray et al. [2016], Lokhov et al. [2018] using convex programming. Klivans and Meka [2017],
improved the running time to be essentially optimal using multiplicative weights. They were able to
generalize this approach to learn non-binary and higher order graphical models.
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Robust Estimation There are a number of classic techniques for robust estimation of low-
dimensional distributions [Huber and Ronchetti, 2011, Hampel et al., 2011]. Diakonikolas et al.
[2016] and Lai et al. [2016] were the first to propose tractable algorithms for robust high-dimensional
estimation. Diakonikolas et al. [2018] considers robust learning of Bayesian networks with known
graphical structure. In this work, they mention robust learning of Ising models as an interesting
open problem. Additionally, Kapoor et al. [2018] considers robust bandit learning under the same
adversarial model as what we consider for the experts problem.

2 Problem Setup

An Ising model is defined over a graph G = (V, E) with |V| = n. Vertices vi ∈ V correspond to binary
random variables xi ∈ {−1,+1} (alternatively known as spins). Edges (vi, vj) ∈ E , also called as
couplings, are denoted using non-zero real parametersAij . There are also an external field parameters
θi for each vertex vi that bias the variable towards a particular value. An Ising model distribution D
is the distribution such that the probability of a spin configuration x = {x1, x2, . . . , xn} is given by:

P(x) =
1

Z
exp

 ∑
(vi,vj)∈E

Aijxixj +
∑
vi∈V

θi

 ,

where Z is a normalization constant. The set of neighbors of node vi ∈ V is described by
∂vi = {vj : (vi, vj) ∈ E}. Accordingly, we define the width of the Ising model λ =

maxvi

(∑
vj∈∂vi |Aij |+ |θi|

)
. To construct an estimator of the edge set that is able to recon-

struct the original structure with high probability, we will make a few assumptions on the coupling
intensity of the model.
A1: The smallest absolute edge weight is greater than α: min(vi,vj)∈E |Aij | ≥ α.
A2: The width of the Ising model is bounded by λ: maxvi

(∑
vj∈∂vi |Aij |+ |θi|

)
≤ λ.

A common variant of the width guarantee is that the graph G has maximum degree d, and the
maximum absolute edge weight maxij |Aij | ≤ β. Note that in this case, we have the width is
bounded by βd.

Now, that we have setup the notation for the Ising model, let us define the two primary contamination
models we will consider.
Definition (Huber’s η-contamination model). Let D be a distribution on {−1, 1}n. In Huber’s
η-contamination model, we receive i.i.d. samples from the distribution (1− η)D+ ηE , where E is an
arbitrary distribution.
Definition (η-corrupted samples). Let D be a distribution on {−1, 1}n. We say that a collection of
samples U is η-corrupted if they were created by the following process: Generate m = |D| samples
by drawing them i.i.d. from D, then an adversary chooses an η-fraction of the samples and replaces
them with arbitrary values on {−1, 1}n.

In the corrupted model, the adversary can introduce dependencies between the observed data. Ignoring
a technical issue1 for simplicity, the corruption model is stronger than the contamination model. All
of our achievability results hold in the corruption model and all of our impossibility results hold in
the contamination model.

3 Inachievability Results

We will use the following well-known lemma in both of our subsequent proofs for inachievability
(see, for example, Fact 2.3 of [Diakonikolas et al., 2016]). It essentially states that if two distribution
are close in total variation distance, then they cannot be distinguished given contaminated samples. It
can be proven using Farkas’ lemma.
Lemma 1. Given two distributionD1 andD2 such that the total variation distance dTV(D1,D2) ≤ η,
there exists distributions E1 and E2 such that (1− η)D1 + ηE1 = (1− η)D2 + ηE2.

1Note that the number of corrupted samples in the second model is not random but with high probability for
large enough n, the second model is stronger [Diakonikolas et al., 2016]
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Figure 1: Graphs for the inachievability result in Theorem 2

We first establish that no algorithm can robustly learn an Ising model with bounded width λ when the
fraction of contaminated samples is even exponentially small in λ.
Theorem 2. For all λ and α > 0, there exists two Ising models D1 and D2 such that both have
width λ and minimum edge weight α such that given any number of η-contaminated samples with
η > min{α, 1} exp(−2(λ− α)), then no algorithm with any number of samples can distinguish the
two distributions.

This theorem holds even in the weaker model where the adversary cannot corrupt real samples but
can only inject an η-fraction of samples.

Proof. We will create two Ising models with different graph structure that can be completely confused
when η > α exp(−2λ). Both models are on three vertices a, b, c and have an edge bc with weight β.
The first model (Model 1-1 in Fig. 1) has an additional edge ab of weight α, while the second model
(Model 1-2 in Fig. 1) has an additional edge ac with weight α. Note that both models have width
λ = α+ β.

The total variation distance dTV between these models can be calculated as:

dTV(D̃1, D̃2) =
2(e−β+α − e−β−α)

2eβ+α + 2eβ−α + 2e−β−α + 2e−β+α

=
1

(e2β + 1)
· e

2α − 1

e2α + 1
= tanh(α)σ(−2β) ≤ min{α, 1}e−2β .

Thus if an adversary can inject min{α, 1} exp(−2β) fraction of samples, they can make samples
from one model look like samples from the other model and vice-versa.

One special case of interest is when the Ising model has a degree bound d and a bound on the
maximum absolute edge weight β. For this special case, we establish a similar lower bound.

Theorem 3. For all d, α > 0 and β > ln 2
3 , there exists two Ising models D1 and D2 on different

graphs such that both are d-sparse and have edges weights satisfying α ≤ Auv ≤ β such that given
any number of η-contaminated samples with η > min{α, 1}e−Cβd, no algorithm can distinguish the
two distributions.
The detailed proof of Theorem 3 can be found in Appendix Section 5.

4 Achievable Results

We complement the prior lower bound with the following robustness guarantee for learning Ising
models with corrupted samples.
Theorem 4. Given an Ising model distribution D of width λ such that the absolute value of all
edge weights are greater than α, suppose we receive N η-corrupted samples from D. If η <

C1 min{α2, 1}e−C2λ, then, if N = O
(

exp(C3λ)
α4 log( nδα )

)
samples, we can recover the Ising model

structure with probability 1− δ, for some fixed constant C1, C2, C3.

We establish this by showing robustness of the Sparsitron algorithm introduced by Klivans and Meka
[2017] where the authors established how to learn Ising models using sparse generalized linear
models (GLMs). A generalized linear model is defined by a weight vector w and link function
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σ : R 7→ [0, 1], which in this work we assume to be the logistic function2. The model predicts the
response ŷ to a feature x as σ(w · x).

For an Ising model with weight matrix A and mean field θ, we have that

P(xi = +1 | x\i) = σ(2θi + 2
∑
j

Aijxj),

where σ is the logistic function. Thus, if we set the true label yi = 1(xi = +1), then the expected
label is a GLM. Klivans and Meka [2017] show how to learn an Ising model by solving

min
w

E[(σ(w · x)− yi)2].

Lemma 5 (Klivans and Meka [2017]). Given an Ising model distribution D of width λ, suppose that
w∗, θ∗ is the weight vector such that P(xi = 1 | x\i) = σ(w∗ · x+ θ∗). If we have a weight vector
w, θ such that, for some α < 1 and fixed constant C,

EX∼D[(σ(w · x+ θ)− σ(w∗ · x+ θ∗))2] ≤ α2e−Cλ

then we have
‖w − w∗‖∞ ≤ α.

Their result shows that if we can learn the appropriate Ising model GLMs with small enough error
then we can learn the Ising structure. Their algorithm to learn the sparse GLM is Sparsitron, which is
based on the Hedge algorithm due Freund and Schapire [1997].

We are able to show that Sparsitron is robust to corrupted samples. See Section 6 for the proof.
Since Sparsitron is based on multiplicative weights, the key result needed to establish Theorem 4 is a
robustness guarantee of the Hedge algorithm.
4.1 Robustness of the Hedge Algorithm
The Hedge algorithm is a powerful tool used in many applications in learning theory and computer
science [Freund and Schapire, 1997, Arora et al., 2012].

In the experts problem, there are n experts. At every iteration we want to generate a distribution over
experts pt. We then observe a loss of each expert `ti. We want our distributions to minimize the total
loss L =

∑T
t=1 p

t · `t.
The Hedge algorithm learns distributions in the following way:

1. Initialize a weight w1
i = 1 for each expert i.

2. At iteration t, use the distribution pt = wt

‖wt‖1 .

3. After observing the loss `ti for each expert i, set wt+1
i = wti(1− ε)`

t
i .

We want to control the loss of the Hedge algorithm in the following adversarial noise model, where
for an η-fraction of losses, the true loss `t is different from the observed loss ˜̀t.
Definition (η-corrupted experts problem). In every iteration t for every expert i, there is a loss `ti
such that 0 ≤ `ti ≤ 1. However we observe the loss ˜̀t

i. In the η-corruption model, the losses `ti are
all created, however before we start observing data the adversary sees all the losses and creates the
observed losses ˜̀t

i such that at most an η-fraction of the observed losses differ from the true losses.
Our goal is to generate a distribution pt at every iteration over the experts such that the total loss at
the T -th iteration L =

∑T
t=1 p

t · `t is minimized. However, we have to do this without observing the
true losses, only the observed losses ˜̀t.

A simple modification of the proof of the noiseless guarantee of Hedge shows that if we run the hedge
algorithm on the observed losses, we can still bound the true loss.

Lemma 6. Let Li =
∑T
t=1 `

t
i. In the η-corrupted loss model, the multiplicative weights algorithm

on the observed losses ˜̀t achieves total loss L =
∑T
t=1 p

t · `t such that

L ≤ lnn

ε
+ (1 + ε)LTi + 3ηT.

The proof is in Section 6 of the Appendix. Note that this is an additive factor of O(ηT ) from the
guarantee in the noiseless case.

2For GLMs, we can use any 1-Lipschitz link functions.
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Appendix

5 Proof of Theorem 3

Figure 2: Graphs for Theorem 3

Proof. We will create two Ising model distributionsD1 andD2 that satisfy the conditions of Theorem
3 and show that they have total variations distance dTV(D1,D2) ≤ αe−β(d−2).
Both models will have a clique of size d on vertices v1, v2, . . . , vd such that every edge weight in
the clique is β. Both models will also have a vertex v0. Model 2− 1 will have an edge between v0
and v1 with edge weight α. Model 2− 2 will have an edge between v0 and v2 with edge weight α.
In addition to what is described in the figures, we will also assume a graph with n− d− 1 vertices
with identical configurations which are unconnected to the rest of the graph and thus don’t affect the
energy and consequently the total variation distance calculations.

Define E(k) =
(
k
2

)
+
(
d−2−k

2

)
− k(d− 2− k). Note that E(k) is the energy from the edge weights

between {x3, x4, . . . , xd} when k of the variables take the value of 1.

We will lower bound the partition function Z by

Z ≥ (eα + e−α)ed
d−2∑
k=0

(
d− 2

k

)
eβE(k). (1)

To see this, first consider only the configurations such that x1 = x2. Then group the configurations
by the number of variables with the value 1 in {x3, x4, . . . , xd. For each of the

(
d−2
k

)
configuration

of {x3, x4, . . . , xd} with k values equal to 1, we need to also decide the value of x1 = x2 and the
value of x0. We thus have

Z ≥(eα + e−α)

d−2∑
k=0

(
d− 2

k

)(
e2β(2k−d+2)+βE(k)+β + e−2β(2k−d+2)+βE(k)+β

)
≥(eα + e−α)eβ

d−2∑
k=0

(
d− 2

k

)
eβE(k)e|2(2k−d+2)|β

We have max{2k − d+ 2,−(2k − d+ 2)} = |2k − d+ 2|.

6



dTV(D1,D2) =
1

2

1

Z

∑
x∈{−1,+1}p

|E1(x)− E2(x)|

=
1

2

4

Z

d−2∑
k=0

(
d− 2

k

)(
eα − e−α

)
e−βeβE(k)

≤2
eα − e−α

eα + e−α
e−2β

∑d−2
k=0

(
d−2
k

)
eβE(k)∑d−2

k=0

(
d−2
k

)
eβE(k)e|2(2k−d+2)|β

≤2
eα − e−α

eα + e−α
e−2β

∑d−2
k=0

(
d−2
k

)
eβE(k)

eβE(d−2)e4(d−2)β

≤2
eα − e−α

eα + e−α
e−2β

2d−2eβE(d−2)

eβE(d−2)e4(d−2)β

≤2αe−2βe−(d−2)(4β−ln 2)

6 Proof of Achieveability

To prove Theorem 4, we just need to show that we can learn the sparse GLM even when the samples
are coming from an η-corrupted distribution. The rest of the proof follows from Lemma 5.

We first prove Theorem 6, following the approach from Freund and Schapire [1997] (see also Arora
et al. [2012]).

Proof of Theorem 6. We define Φt =
∑n
i=1 w

t
i . We first upper bound the value of ΦT .

Suppose that at time t we observe the loss ˜̀t and that the observed loss ˜̀t is equal to the true loss `t.
We have that

Φt+1 =

n∑
i=1

wt+1
i =

n∑
i=1

wti(1− γ)`
t
i ≤

n∑
i=1

wti(1− `tiγ)

= Φt − γΦt
n∑
i=1

pti`
t
i ≤ Φt exp(−γpt · `t).

Now suppose that the observed loss ˜̀t is different from the true loss `t. Note that ˜̀t
i − `ti ≥ −1. We

have that

Φt+1 =

n∑
i=1

wt+1
i =

n∑
i=1

wti(1− γ)
˜̀t
i =

n∑
i=1

wti(1− γ)
˜̀t
i+`

t
i−`

t
i

≤ (1− γ)−1
n∑
i=1

wti(1− γ)`
t
i ≤ (1− γ)−1Φt exp(−γpt · `t).

Since only ηT steps have corrupted losses, we have that

ΦT ≤ Φ1(1− γ)−ηT exp(γL), (2)

where L =
∑T
t=1 p

t · `t is the total loss.

We now lower bound the value of ΦT . If the observed loss is equal to the true loss, we have that

Φt+1 ≥ wt+1
i = wti(1− γ)`

t+1
i ,

otherwise, since ˜̀t
i − `ti ≤ 1, we have that

Φt+1 ≥ wt+1
i = wti(1− γ)

˜̀t
i−`

t
i+`

t
i ≥ (1− γ)wti(1− γ)`

t
i .
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Since only ηT steps have corrupted losses, we have that

ΦT ≥ w1(1− γ)ηT (1− γ)Li , (3)

where Li =
∑T
t=1 `

T
i is the loss for expert i.

Since Φ1 = n and w1
i = 1, we can use Equations (2) and (3) to show that

(1− γ)ηT (1− γ)Li ≤ ΦT ≤ n(1− γ)−ηT exp(γL),

which implies that

L ≤ lnn

γ
+ Li

− ln(1− γ)

γ
+ 2ηT

− ln(1− γ)

γ
.

Using the fact that − ln(1− γ) ≤ γ(1 + γ) for γ ≤ 1
2 , we can conclude that

L ≤ lnn

γ
+ Li(1 + γ) + 3ηT.

We then need to prove that the Sparsitron algorithm is able to efficiently optimize sparse GLMs
with an η-corrupted dataset. The Sparsitron algorithm is specified by Algorithm 1. Note that it is a
particular instance of the multiplicative weights algorithm.

Algorithm 1 Sparsitron [Klivans and Meka [2017]]
Input: training samples (x1, y1), . . . , (xT , yT )
Input: test samples (a1, b1), . . . , (aT , bT )
Input: sparsity parameter λ, weight parameter γ
initialize all weights: w0

i = 1
for all iterations t = 1, 2, . . . , T :

pt = wt−1

‖wt−1‖1
`t = 1

2 (1 + (σ(λpt · xt)− yt)xt)
wtt = wt−1i (1− γ)`

t
i

for all iterations t = 1, 2, . . . T :
ε̂(λpt) = 1

T

∑T
j=1(u(λpt · aj)− bj)2

Return λpt
∗

for t∗ = argmintε̂(λp
t)

Using Sparsitron, we can establish the following Theorem.
Theorem 7. Let D be a distribution on {−1, 1}n × {0, 1}, such that Ex,y∼D[y | x] = σ(w∗ · x).
Assume that ‖w∗‖1 ≤ λ for a known λ. There exists an algorithm such that, given T = O(λ

2

ε2 log n
δε )

η-corrupted samples from D, learns a weight vector w such that, with probability 1− δ, satisfies

Ex,y∼D[(σ(w · x)− σ(w∗ · x))2] ≤ ε+O(λη).

Using Theorem 7, we can now prove Theorem 4 by setting ε, η ≤ min{α2, 1}e−Cmax{λ,1} for some
constant C and applying Lemma 5.

We now prove Theorem 7. The proof is essentially the same as the proof of Theorem 3.1 by Klivans
and Meka [2017] in the non-adversarial setting, expect that we use the bound of Theorem 6. For
completeness, we duplicate the proof including the error induced by the adversarial setting.

Proof of Theorem 4. We can assume that w∗ ≥ 0 and ‖w∗‖1 = λ. If not, we can map examples
(x, y) to ((x,−x, 0), y).

Define the risk of a weight vector v to be ε(v) = E
x,y∼D

[(σ(v · x)− y)2].

Since the training set and the holdout set are the same size, if the whole dataset is η-corrupted, then
each portion of the dataset is at most 2η corrupted.

Let x̃t, ỹt be the corrupted examples. To be fully rigorous, we need to define a probability space over
the examples (xt, yt, x̃t, ỹt). We will assume the adversary takes the following form:

8



1. The adversary receives the dataset (xt, yt).

2. The adversary enumerates all valid η-corrupted datasets.

3. The adversary runs the Sparsitron algorithm for each η-corrupted dataset and calculates the
risk of the feature vector learned from each dataset.

4. The adversary sends us the dataset with the highest risk.

This is a deterministic function of the true dataset. If we are robust to this adversary, then we can be
robust to any adversary.

Let Qt = pt · `t − w∗

λ · `
t. Let

Zt = Qt − E
xt,yt,x̃t,ỹt

[Qt | (x1, y1, x̃1, ỹ1), . . . , (xt−1, yt−1, x̃t−1, ỹt−1)].

Note that Z1, . . . , ZT is a martingale difference sequence with respect to the se-
quence (x1, y1, x̃1, ỹ1), . . . , (xT , yT , x̃T , ỹT ), as Zt is a function of the values
(x1, y1, x̃1, ỹ1), . . . , (xT , yT , x̃t, ỹt). Further, we have that Zt is bounded between −2 and
2. Thus, by the Azuma-Hoeffding inequality, we have that

∣∣∣∑T
t=1 Z

t
∣∣∣ ≤ O(

√
T log(1/δ), with

probability 1− δ. We can conclude that, with probability at least 1− δ,
T∑
t=1

E
xt,yt,x̃t,ỹt

[Qt | (x1, y1, x̃1, ỹ1), . . . , (xt−1, yt−1, x̃t−1, ỹt−1)] ≤
T∑
t=1

Qt +O(
√
T log(1/δ)).

(4)

Now we analyze the term

E
xt,yt,x̃t,ỹt

[Qt | (x1, y1, x̃1, ỹ1), . . . , (xt−1, yt−1, x̃t−1, ỹt−1)]

and relate it to the error of the weight vector λpt. Recall that

E
xt,yt,x̃t,ỹt

[Qt | (x1, y1, x̃1, ỹ1), . . . , (xt−1, yt−1, x̃t−1, ỹt−1)]

= E
xt,yt,x̃t,ỹt

[(pt − (1/λ)w∗) · `t | (x1, y1, x̃1, ỹ1), . . . , (xt−1, yt−1, x̃t−1, ỹt−1)].

Note that pt is completely determined by (x̃1, ỹ1), . . . , (x̃t−1, ỹt−1) and `t is completely determined
by (xt, yt). We thus have

E
xt,yt,x̃t,ỹt

[Qt | (x1, y1, x̃1, ỹ1), . . . , (xt−1, yt−1, x̃t−1, ỹt−1)] = E
xt,yt

[(pt − (1/λ)w∗) · `t].

From the proof of Theorem 3.1 of Klivans and Meka [2017], we can conclude that

E
xt,yt,x̃t,ỹt

[Qt | (x1, y1, x̃1, ỹ1), . . . , (xt−1, yt−1, x̃t−1, ỹt−1)] = E
xt,yt

[(pt−(1/λ)w∗)·`t] ≥ 1

2λ
ε(λpt).

Connecting the above with Inequality (4), we have, with probability at least 1− δ,

1

2λ

T∑
t=1

ε(λpt) ≤
T∑
t=1

Qt +O(
√
T log(1/δ))

=

T∑
t=1

pt · `t −
T∑
t=1

w∗

λ
· `t +O(

√
T log(1/δ)). (5)

Now, using Theorem 6, with γ =
√

lnn
T , we have that the total loss L =

∑T
t=1 p

t · `T satisfies

L ≤ min
i
Li +O(

√
T log n+ ηT ),

where Li =
∑T
t=1 `

T
i is the loss for expert i. Connecting this with Inequality (5), we have, with

probability 1− δ

1

2λ

T∑
t=1

ε(λpt) ≤ min
i
Li −

T∑
t=1

w∗

λ
· `t +O(

√
T log(1/δ) +

√
T log n+ ηT ).

9



Since w∗/λ is a valid distribution, and mini Li is the minimum loss for all distributions, we have
that mini Li −

∑T
t=1

w∗

λ · `
t ≤ 0, and thus, with probability 1− δ,

1

2λ

T∑
t=1

ε(λpt) ≤ O(
√
T log(1/δ) +

√
T log n+ ηT )

=⇒ min
t
ε(λpt) ≤ 1

T

T∑
t=1

ε(λpt) ≤ λO

(√
log(1/δ) + log n

T

)
+O(λη).

Setting T = O(λ
2 log(n/δ)

ε2 ), we have, with probability 1− δ, that

min
t
ε(λpt) ≤ O(ε+ λη).

Using our holdout set, we calculate the empirical error for each weight vector λpt using

ε̂(λpt) =
1

T

T∑
j=1

(σ(λpt · aj)− bj)2.

From Fact 3.2 of Klivans and Meka [2017], since T ≥ O( log(T/δ)
ε2 ), we know that, with probability

1 − δ, we have that |ε(λpt) − ε̂(λpt)| ≤ ε. However, our examples are η-corrupted. Since each
value of (σ(λpt · aj) − bj)2 is bounded between −4 and 4, the mean of the corrupted examples
differs from the mean of the true examples by an additive factor of O(η) at most. Thus, by choosing
the weight vector λpt with the smallest empirical error, we can find a weight vector λpt such that
ε(λpt) ≤ O(ε+ λη).
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