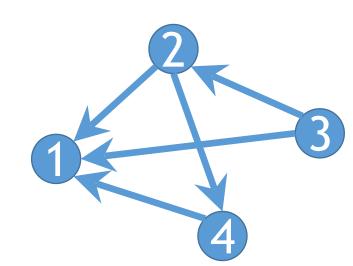
Experimental Design for Cost-Aware Learning of Causal Graphs

Erik Lindgren Murat Kocaoglu Alexandros G Dimakis Sriram Vishwanath

Causal Graphs

We assume there is some underlying causal graph D = (V, E). If x causes y, then there exists a directed edge from x to y.

This is Pearl's structural causal model (Pearl '09).



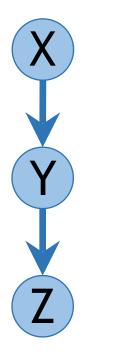
 $x_1 = f_1(x_2, x_3, x_4, e_1)$ $x_2 = f_2(x_3, e_2)$ $x_3 = f_3(e_3)$ $x_4 = f_4(x_2, e_4)$

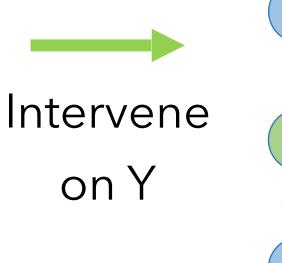
 e_i are jointly independent.

Interventions

An intervention is an experiment which fixes the value of a set of random variables.

Intervention changes the causal graph. Use conditional independence tests to detect the changes.

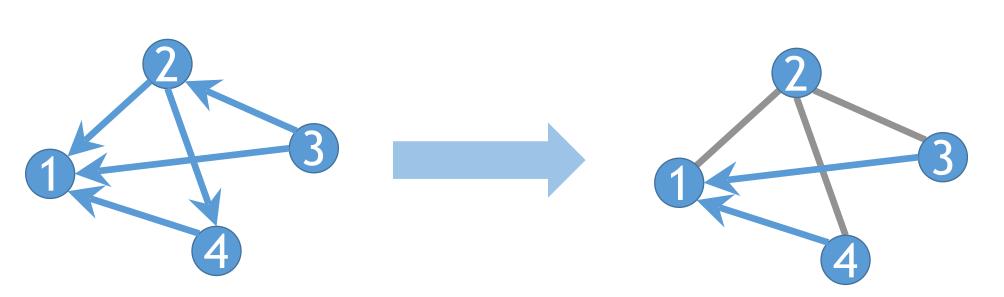




Learning From Data

From conditional independence tests, we can learn:

- graph skeleton (undirected version)
- v-structures $(a \rightarrow b \leftarrow c)$

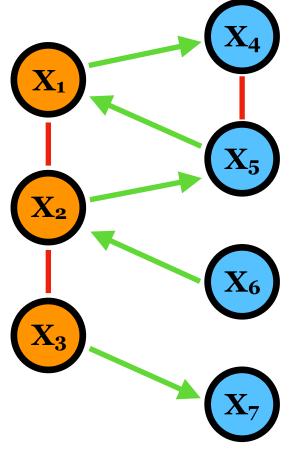


Meek's rules learn other edges by using acyclicity and other properties (Meek '95).

Remaining undirected graph is chordal.

Learning From Interventions

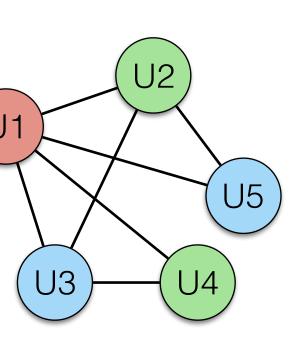
We can learn all the edges in the cut defined by the intervention set.



Each intervention may have a different cost.

Intervention Designs

- We consider *non-adaptive* case: all experiments must be designed before seeing results.
- Need to choose a set of graph cuts such that all edges are covered by some cut. This is called a graph separating system.
- Every graph separating system corresponds to some proper coloring of the graph (Hauser and Bühlmann '12).



	I 1	2
U1	1	0
U2	0	1
U3	1	1
U4	0	0
U5	0	0

U1	1	0	
U2	0	1	Red
U3	0	0	Gre
U4	0	1	Blue
U5	0	0	

1 2

	I_1	I_2
Red	1	0
Gre	0	1
Blue	0	0

	I_1	2
Red	1	0
Gre	0	1
Blue	0	0

Graph separating systems

Minimum Cost Intervention Design

Suppose intervening on a vertex v has a cost w_v . First considered by (Kocaoglu et al. '17), the cost of an intervention design ${\mathcal I}$ is

$$cost(\mathcal{I}) = \sum_{I \in \mathcal{I}} \sum_{v \in I} w_v.$$

Problem: Given a chordal graph, find an intervention design with at most m interventions of minimal cost.

It is equivalent to a weighted coloring problem where there are $\binom{m}{k}$ colors of weight k = 0, 1, ..., m.

Theorem: The minimum cost intervention design problem is NP-hard for arbitrary chordal graphs, even in the unweighted case. [Reduction from Numerical 3D Matching.]

Input is chordal, can find the maximum weighted independent set in polynomial time.

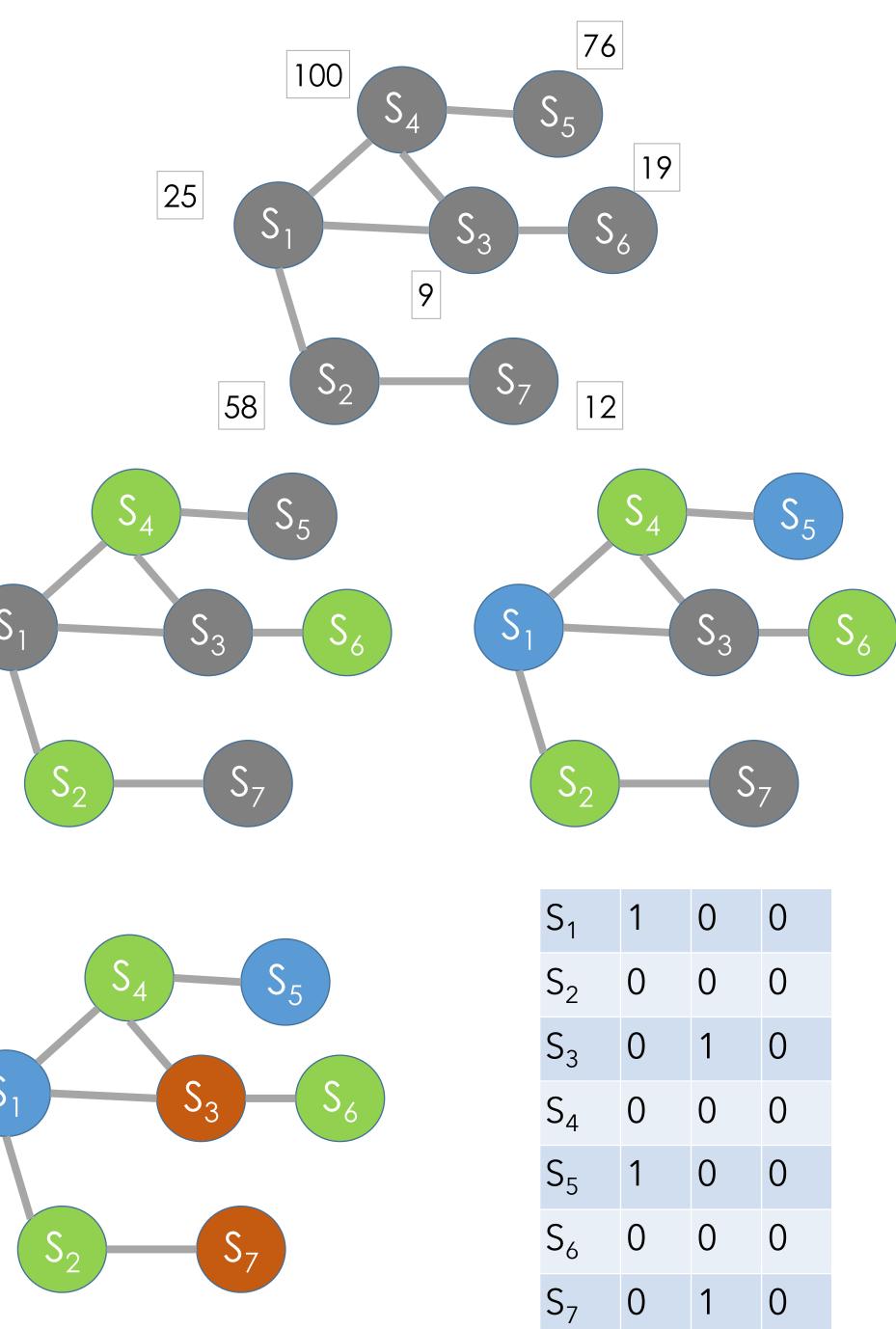
However the number of steps needed or approximation guarantees were unknown.

Hardness Result

A Greedy Algorithm

Greedy Algorithm (Kocaoglu et al. '17):

- While the graph is not fully colored:
 - Find the max weight independent set
 - Color this set with the next cheapest color • Remove this set from the graph



MIT-IBM Watson AI Lab

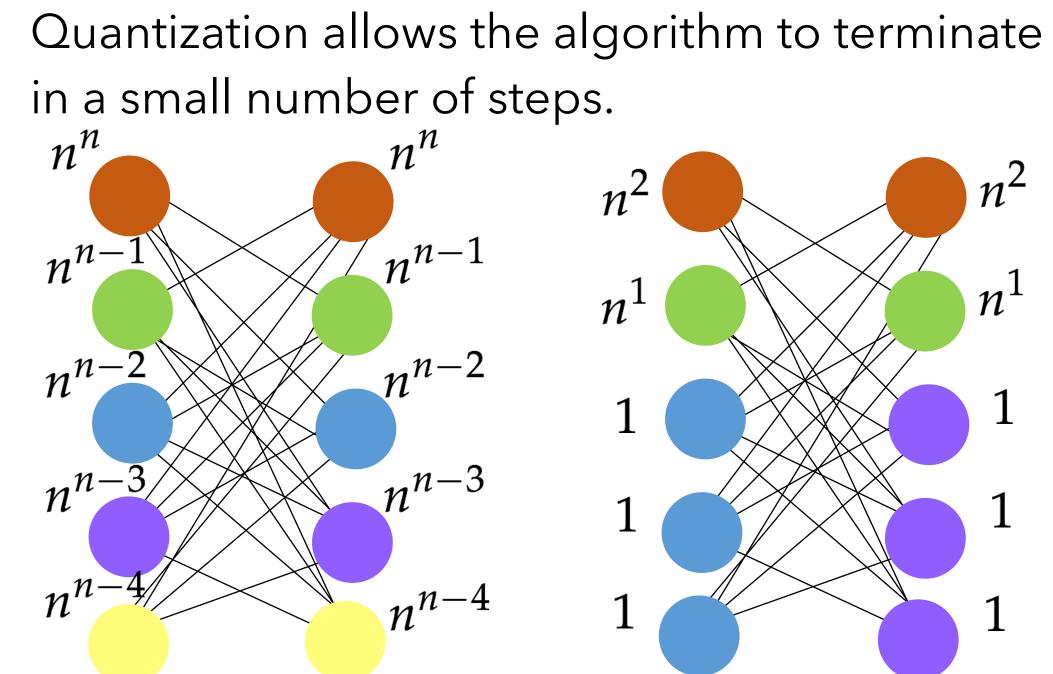
Quantize the vertex weights not in the maximum independent set so that they are all bounded by a polynomial, then run the greedy algorithm.

Theorem: If the number of interventions *m* satisfies

 $m \ge \log \chi + O(\log \log n),$ then the greedy algorithm is a factor of $(2 + \varepsilon)$ from the optimal cost.

Proof Idea:

Correctness: Show the greedy algorithm is also the greedy algorithm for a particular submodular set cover problem (Wolsey '82).

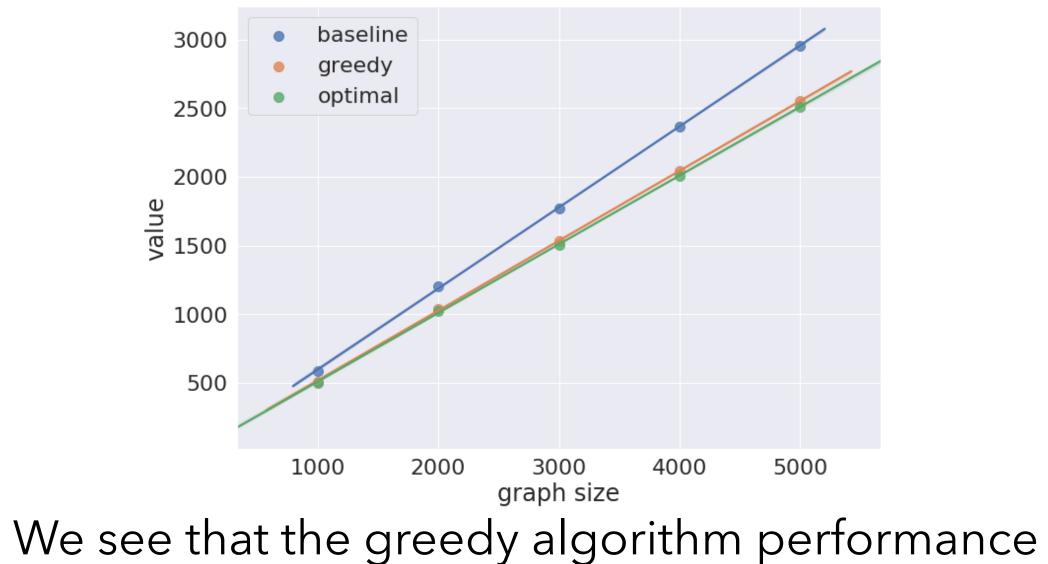


Approximation: Uses results from submodular optimization.

We generate random chordal graphs of various sizes using the approach of Shanmugam et al., (NeurIPS 2015). We generate costs using a heavy-tailed distribution. We compare the solution value to the optimal solution.

Approximation Guarantees

Experiments



is nearly optimal.